报告厅。
台下坐得满满当当,连过道里都站了好些人,许青舟觉得自己有点小瞧克拉梅尔定理的吸引力了。
他打开准备好的PPT,简短地对自己的报告内容进行了一个陈述,“今天的报告会,我主要分为三个部分,定理说明,定理证明,定理意义”
“相邻素数问题是数论的基础问题,该性质的厘定关系到一切数系的构造。欧几里得证明了,自然数要延伸,素数就要延伸”
许青舟重点讲定理证明的部分,从如何使用尔伯格筛法精确地了解素数的分布情况,再到如何用解析数论对素数分布情况进行修正和补充。
“在克拉梅尔定理研究的过程中,首先得摸索出素数差值间距的函数相邻迭代表达式.”
“这也是证明之所以成功的关键点——f(p)函数,大家可能会觉得很陌生,是的,这是我自己构造出来的函数,可以给出小于p的素数“密集度”的一定度量。”
“通过此函数,我成功把上界放宽为C×(lo&bp;p)^α。对了,这里的α是一个大于1但小于2的实数。”
望着台上侃侃而谈的年轻人,徐院士觉得自己之前的担心完全是多余的,这个小家伙在台上的气场不输前面开报告会的数学家们。
赵正来则是暗自叹息,有一个过于牛逼的师弟,压力可太大了。
凯莎琳同样紧紧盯着许青舟,越来越觉得这人有意思,或许,是因为她有慕强的心理?
除了这些,角落里,印度小哥黑着脸,内心嫉妒无以复加,这个夏国人,强得有点可怕.
不过
他深吸了一口气,低头看向面前孪生素数猜想的证明资料。
相信要不了多久,站在讲台上做报告的人,会是他,萨尔曼·汗!
讲台上,许青舟已经进入状态,找到曾经讲课的感觉,说明如何构造数学模型,接着又是如何想到使用物理学中的统计理论、图论等等对整个证明过程进行改进。
60分钟悄然过去,已经进入提问环节。
“许先生,您论文的第5页第三段,提到‘两边平方可变换(lp&bp;)^2≈(p&bp;&bp;/)^2,设置&bp;p与后继素数&bp;p&bp;+1差值为&bp;2k’,这里和后面的逻辑并不通顺。”
对于这个问题,许青舟早有准备,笑着说道:“p&bp;/&bp;)^2是发散的,也就是说,越大,所对应的素数就越大”
他讲解的同时,在黑板上把公式写下来。
5分钟过后,这人说了句谢谢,若有所思地坐下。
又有人举手,“许先生,在证明的过程中,你把上界放宽到C×(lo&bp;p)^α”
所有的提问都在许青舟的意料范围之内,因此基本都能快速地回答出来。
最后一位提问者是梅纳德教授。
“许,我想到freefado的著名比喻。”
梅纳德教授对克拉梅尔定理并没有什么疑惑,而是说道:“数学家也许可以分为鸟和青蛙,鸟可以俯瞰全局,思考宏观的数学结构,而青蛙则是喜欢深入具体的细节,解决具体的问题,实战能力很强。”
“在我这里,你属于后者,能够用敏锐的目光找到数学真理的痕迹。”
说完,梅纳德教授开始鼓掌,大厅中随即响起浓烈的掌声。
鸟和青蛙
与大家的激动相比,许青舟反倒是愣住,像是被一颗子弹击中,直愣愣地杵在原地,陷入沉思。
没错,他很注重细节,诸如每次遇到问题,都喜欢把所有的细节都扣一遍,这样总能找到新的思路,可这也意味着会下意识地忽略掉整体,无法像“鸟”一样俯瞰全局。
他这个习惯,对于解决问题而言是把双刃剑,能让人快速找到关键点,也会让人忘记看前方的路。
梅纳德教授的话像一把钥匙,打开了思绪的大门,原本模糊而朦胧的灵感,在这一瞬间清晰可见。
说得形象一点,以前的那种感觉,脑袋里像是装满了无序运动的粒子,他能看到,可无法捕捉到它的痕迹。
但这个时候,突然之间,一个“玻色子”凝聚成了“玻色-爱因斯坦凝聚态”,所有的思维杂念瞬间整齐划一,指向了那个闪耀的灵感之光。
仿佛整个宇宙的对称性和简洁性都在那一刻向你敞开了大门。
许青舟大脑在飞速运转。是的,他以前的确被细节蒙蔽了,一直纠结于要找到一个准确的公式。