第145章 新的难题(2 / 2)

在一次团队内部的头脑风暴会议上,技术员小张提出:“我们之前主要关注的是喷油嘴的孔径和喷射角度等常规参数,或许可以考虑喷油嘴的喷油脉冲频率与发动机不同工况的精准匹配问题,根据飞行阶段的不同,动态调整喷油脉冲频率,可能会进一步降低燃油消耗率。”

这个想法立刻引起了大家的兴趣,纷纷围绕这个方向展开讨论。

另一位技术员小李补充道:“而且我们还可以结合发动机进气量、燃烧室压力等参数变化,建立一个更精确的燃油喷射控制模型,通过实时监测这些参数,让喷油嘴的喷油动作更加智能化、精准化。”

经过一番热烈的讨论,团队逐渐梳理出了几条颇具潜力的优化思路,并根据这些思路开始着手制定更为详细的试验计划。

他们详细规划了不同飞行工况下的测试节点,准备增加更多的数据采集点,以便更全面准确地分析喷油嘴参数变化对燃油消耗率的影响,同时也对试验所需的特殊测试设备进行了梳理和准备,为新一轮的试验做好了充分的铺垫。

基于前期对通讯系统周边电磁环境的排查结果以及大家的深入分析,通讯小组与专家们齐聚一堂,共同商讨制定新的抗干扰方案。

首先,在电磁屏蔽方面,他们决定增加一层特制的高性能电磁屏蔽层,这层屏蔽层采用了新型的吸波材料,能够有效吸收和反射外界的电磁干扰,尤其是针对那些高频、高强度的干扰信号。

技术人员们精心设计了屏蔽层的安装位置和覆盖范围,确保将通讯系统的关键部位严密保护起来,同时又不会影响其他电子设备的正常散热和运行。

针对电子设备之间的电磁耦合问题,团队重新规划了设备布局,通过精确的电磁场模拟计算,将容易产生相互干扰的设备进行了合理的空间隔离,并且优化了它们之间的连接线路走向,尽量减少线路之间的电磁耦合效应。

例如,将信号发射装置与一些高功率的电磁设备拉开了足够的距离,避免电磁场的直接相互影响。

此外,为了进一步增强信号的稳定性和抗干扰能力,他们还引入了先进的自适应信号过滤技术。

这种技术能够实时监测通讯信号中的干扰成分,并自动调整过滤参数,精准地滤除各种杂波和异常信号,就像给通讯信号穿上了一层智能的“防护服”。

在新方案制定完成后,专家们又进行了详细的理论可行性分析,通过建立复杂的电磁模型,模拟在各种极端电磁环境下新方案的表现。

经过多次模拟计算,结果显示新方案在抑制干扰、保障信号稳定传输方面有着显着的提升效果,但同时也预估到在实际应用中可能会面临新的电磁兼容性问题以及增加的设备重量对直升机整体性能的影响等挑战。

为此,团队针对这些潜在风险制定了相应的应对预案,如增加电磁兼容性测试环节、优化设备结构减轻重量等措施,力求新方案能够顺利实施并达到预期目标。

根据对发动机散热系统问题的深入分析结果,项目组迅速着手实施优化方案,力求彻底解决散热难题。

对于散热鳍片材质在高温下热性能下降的问题,采购部门积极与多家材料供应商联系,经过多轮筛选和性能测试,最终选定了一种新型的耐高温合金材料用于制造散热鳍片。

这种材料不仅在高温下能够保持稳定的导热系数,而且具有更好的抗氧化性能,能够有效延长散热鳍片的使用寿命。

技术人员们严格把控散热鳍片的制造工艺,确保每一片散热鳍片都符合高精度的质量要求,然后小心翼翼地将它们安装到发动机的相应位置上。

针对智能温控调节装置控制逻辑不够精准的情况,项目组与厂家紧密合作,由厂家的专业技术团队对装置的软件进行了升级优化。

升级后的软件能够根据发动机实时温度变化,以更快的响应速度、更精准的调节策略来控制散热系统的运行,确保发动机始终处于最佳的温度区间。

在软件升级完成后,技术人员进行了多次模拟测试,不断调整参数,使其与发动机的实际工况完美匹配。

而对于发动机内部热流分布复杂、存在散热“盲区”的问题,散热系统设计团队对原有的散热结构布局进行了重新调整。

他们在发动机热量聚集较为严重的区域增加了额外的散热通道,通过巧妙的管道设计,引导热流更均匀地散发出去,同时优化了散热鳍片的排列方式,使其能够更好地覆盖那些之前容易被忽视的“盲区”。