第146章 高端产线升级的效果,重构光刻机系(1 / 2)

这条产线是一条十二寸的中型产线,有8台光刻机,型号是阿斯麦1980di,但应该已经经过了一轮的魔改。

另外离子注入机10台、刻蚀机40台,还有研磨机、电子电压监测设备等等一系列的设备。

纪弘一边参观一边了解着情况,同时,产线这边的负责人还给他送来了产线以及产线设备的相关技术资料——这些资料与原版已经有所不同,尤其是光刻机,经过了很大程度的魔改。

产能方面,以成熟产线的14nm工艺计,这条产线月产晶圆大约为一万片,以一般芯片的面积计,一片晶圆大约切割良品芯片约五六十,也就是说,这条产线月芯片产量大约在五六十万左右。

但麒麟9000s用SAQP四重曝光技术,效率大约要下降30%,再加上良率受到的影响,实际产能可能只剩下一半,也就是大约二三十万片。

……

改造产线,纪弘没打算从硬件入手,这里的情况和宏图微电子的情况还不同,那里的硬件设备确实落后,一些自动化和智能化的模块不够用才需要重新设计和改造。

但这里,本就是先进制程工艺产线,尤其是华为和中芯的工程师已经还已经对它进行过改造,硬件设备已经完全能够满足智能化的需要了。

对产线的优化,纪弘不懂,即便懂,也不可能比得上先后在AMD、台积电、三星,现在是中芯国际联席CEO的梁松。

这里的产线大概率就是他负责设计和工艺、良率以及产能的提升的。

虽然没有可靠的证据,但是,能够帮助华为建立先进工艺产线,先后实现等效7nm等效5nm工艺的量产,不说国内,找遍全世界可能也就只有一个梁松。

梁松这个人很传奇,早年在AMD,加入台积电的第一件事儿,就是带领台积电在130nm制程领域击败了老牌强敌IBM。

后来因为一些原因离开台积电加入三星,直接助力三星在14nm这个工艺节点领先台积电半年,后被台积电起诉履行竞业限制条款离开三星。

加入中芯国际之后,更是直接提升了中芯国际28nm工艺的良品率。随后更是跳过22nm等中间节点,直接跳代研发14nm工艺,只用了一年不到的时间就并成功实现量产,而且良品率达到90%以上。

前两年,华为麒麟710A中芯国际重置版就是利用的这个工艺生产的。

而现在,DUV光刻机量产的7nm和5nm……

梁松,纪弘还特意查了查,1952的年的人,现年已经72岁了,主要工作估计是颐养天年了,只有有重大情况或者问题的时候才会出手。

此时,这边在产线上负责的是一位高工,名叫曾学成。

“曾工,你现在有梁先生几分的功力啊?”纪弘半开玩笑的问道。

“纪总别开玩笑了,十个我捆一起也不如梁先生一半!”曾学成介绍着梁松的丰功伟绩,纪弘也确认了,这边的核心工作确实出自他手。

“想不想超过他?”纪弘诱惑道。

曾学成心道:我在家哄我儿子也是这口气,想不想考年级第一?问题是有那实力吗?

他要真能考年级第一,那我就该怀疑这是不是我的种了。

不过心里这么想,嘴上不可能这么说,他也知道纪弘是过来干什么的,于是说道:“但凭纪总吩咐!”

纪弘知道他不信,但配合就好。

虽然得到了一些芯片设计和光刻机相关的灵感,但先进工艺这种东西十分复杂和系统,不是说有三两个好点子就能搞定的。

他的主业还是训练AI。

“我这边先了解一下产线的情况,”纪弘介绍着自己的工作安排:“然后生产的各个环节、流程相关数据实时给到我这边。

“前期主要用于AI训练,后期,根据AI的反馈调整和升级产线工艺。”

纪弘强调道:“我刚刚跟你说的话,你可以不信,但是一定要不打折扣的执行。”

“明白!”曾学成对卷耳智能科技是做什么的门儿清,只不过以前都是软件和设计层面的,难道AI对产线的优化也能起到关键作用?

他心里突然就冒出一个想法:我自己比梁老师那是这辈子都没希望了,但是如果我加上AI呢?

显然,曾学成对纪弘的思想和言论也是关注了的,一小会儿的功夫就想明白了这一层,也意识到纪弘刚刚的问他的问题并不是随口一说,也并不是开玩笑。

一念至此,曾学成更加的积极了——如果说之前的表态只是为了工作,那现在就完全充满期待了。

……

一连好几天的时间,纪弘都在产线这边,产线的数据不断的在提供,类思维AI的训练也一直在进行。

“这里,看到了没?”纪弘说道:“硅片对准标识和掩膜板对准标识的中心坐标差值,根据这些数据分析,AI认为还有优化空间。

“主要是……”

纪弘跟曾学成讲解着相关内容,并让他配合对产线的运动控制模块儿的算法进行着调整。

曾学成稍微一计算,就知道这东西应该对产线工艺是增益的。

虽然具体的结果还需要生产来验证,但,能够有找到梁松老师设计和规划,甚至优化了好久的产线的一个问题,还是让曾学成十分激动:

“我加上AI,真的能达到梁松老师的水平?”

能够找到问题,就是水平的体现,哪怕调整完了是副作用,也是实力。

毕竟,没有哪个人敢说我动一下就是升级,哪怕是梁松,调整产线的相关模块儿也是摸索摸索再摸索,最终才确定的方案。

纪弘没有回答他这个问题,而是问道:“你比梁松老师差在哪儿?最关键的点!”

要说差在哪儿,以曾学成现在的水平,那差的多了去了。

要说最关键的点,他沉思了一会儿,说道:“就是对问题的敏锐程度。比如一个新的工艺节点,测试产线放在这儿了,梁松老师的对问题就非常敏锐。

“他手一指,这儿是瓶颈,改进这儿,可以提升良率,那儿可能有问题。排查下去,几乎八九不离十。

“事实上,怎么说呢,当他把问题指出来之后,我去看,大多数时候我也能看出来,甚至能解决。”

“但,就是知道哪儿有问题,才是最关键的是吧?”纪弘笑道:“那今天这个问题呢?你看出来了吗?”

“现在我也能看出来!”曾学成突然明悟:“AI现在扮演的是梁松老师的角色?”

梁松怎么判断问题所在的,纪弘不清楚,可能是直觉,也可能是经验。

但,AI是怎么判断的,纪弘清楚的很——少部分的类思维加上大量的计算,甚至还有一部分推演在里边。

世界模型一直在运行,65nm以下级别的智能EDA工具灵韵在各大高校实验室也已经开始使用,流片式仿真的训练也一直在进行。

类推能力,尤其是精密工业领域的类推能力也有了不少的提升。

比如今天发现的这个问题,改进了之后能有多少提升,AI都已经做过类推了。

但方式不重要,能发现问题,能优化和改进才是最关键的。