第二十四章首日竞赛(2 / 2)

重生科技学霸 疯子C 780 字 10个月前

秦元清开始作答,首先利用数学归纳法证明:对任意的整数i(2≤i≤k),都有被整除,得出当i=2时,由已知得能被乘除的结论成立。一步步以此展开,最后得出,ak(a1-1)不能被n整除的结论。

然后秦元清又看向第二道题。

“△ABC外接圆的圆心为O,P、Q分别在线段CA、AB上,K、L、M分别是BP、CQ、PQ的中点,圆Г过K、L、M并且与PQ相切。证明:OP=OQ。”

秦元清这一题审题完成,倒是觉得这一题比上一题容易一些,没有设陷阱。先是做了一个圆,然后化作△ABC,然后又作出CA、AB线段以及P、Q二点,然后标出BP、CQ、PQ的中点K、L、M。最后作出圆Г。

随后以直线PQ与圆Г相切,相切点M,然后通过弦切角定理得出∠QMK=∠MLK。由于点K、M分别是BP、PQ的中点,所以KM∥BQ,从而得出∠QMK=∠AQP。

因此得到∠MLK=∠AQP。

同理,∠MKL=∠APQ。

根据角的相等,得到△MKL∽△APO,从而得到MK/ML=AP/AQ

因为K、L、M分别是线段BP、CQ、PQ的中点,所以得到KM=BQ/2,LM=CP/2,将此带入上式得BQ/CP=AP/AQ,将式子转为AP·CP=AQ·BQ。通过圆幂定理知OP2=OA2-AP·CP=OA2-AQ·BQ=OQ2

所以,得出结论OP=OQ。

秦元清连检查都没有检查,将抽向的数学问题转为图像,这个是他擅长的地方,他有十全的把握证明。

紧接着秦元清看向第三题,“3、S1,S2,S3,是严格递增的正整数数列,并且它的子数列SS1、SS2、SS3,和SS1+1,SS2+1,SS3+1都是等差数列。证明:S1,S2,S3是一个等差数列。”

看着这一题,秦元清微皱起眉头,这一题明显比前面两道题难得多,秦元清将已知条件稍微捋了一下,这一道题融合了等差数列、以及转换法。

秦元清一步一步地展开,通过数列以及子数列都是严格的递增的正整数数列,设Ssk=a+(k-1)d1,SSk+1=b+(k-1)d2(k=1,2,a、b、d1、d2∈N+)。

将问题转为函数、数列后,以Sk